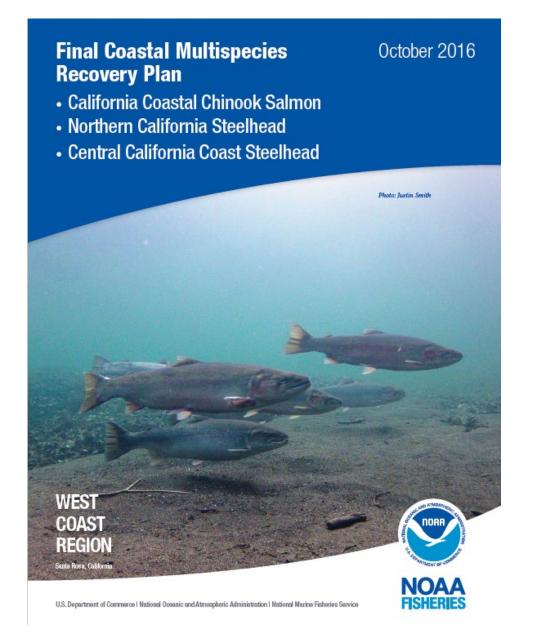
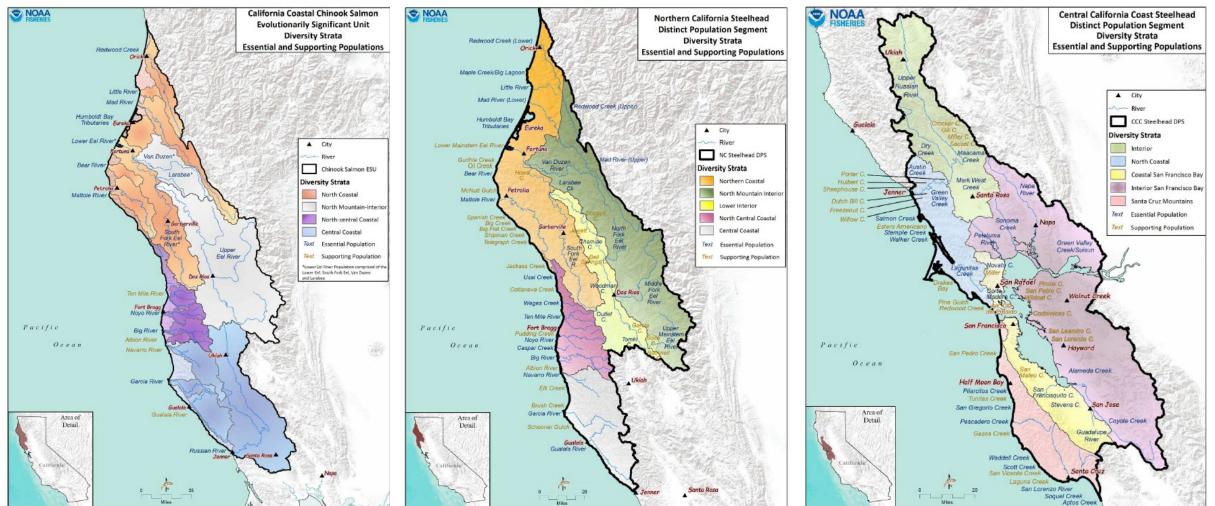

Introduction to Potter Valley Project Two-Basin Solution Fisheries Studies


David Manning Environmental Resources Manager, Sonoma Water

Today's Presentation

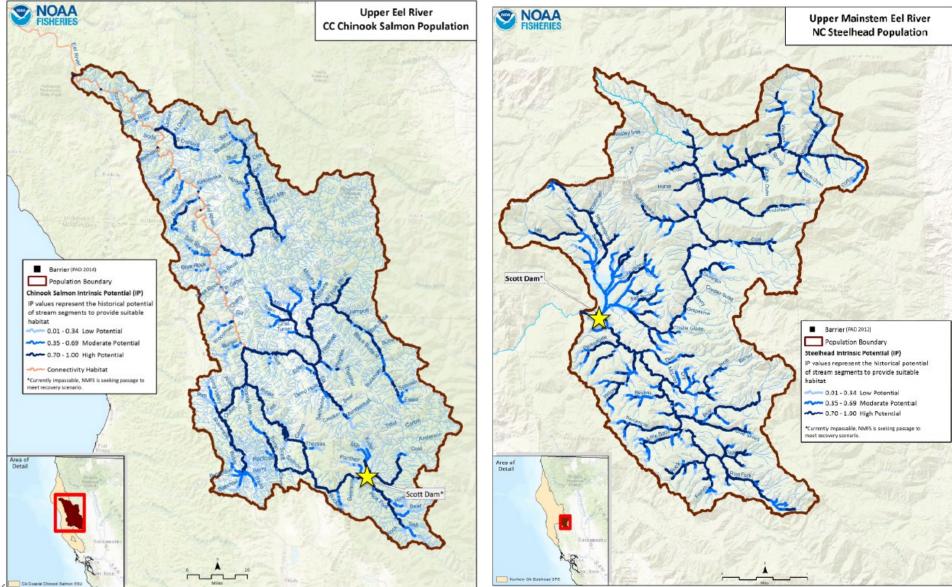
- Listing and Status of Salmonids in Both Basins
- Huffman Ad Hoc Fish Passage Evaluation Dec 2019
- Fisheries and Ecosystem Responses April 2021
- Scott and Cape Horn Dam Removal Alternatives Nov 2021
- Cape Horn Dam Fish Passage Improvements Nov 2021

RUSSIAN RIVER WATER FORUM



A regional collaboration for our water future

CC Chinook


NC Steelhead

CCC Steelhead

Upper Eel River Chinook and Steelhead Habitat

6/21/2023

CC Chinook Eel River (interior) & Russian River

Diversity Strata	CC Chinook salmon Populations	Historical Population Status	Population's Role In Recovery	Current Weighted IP-km	Spawner Density	Spawner Abundanc
North Mountain Interior	Lower Eel River ~ Larabee Creek/ Van Duzen River*	I	Essential	144.0	20.0	2,900
	Upper Eel River	Ι	Essential	528.5	20.0	10,600
	North Mountain Interio	r Diversity Stra	tum Recovery T	arget		13,500
Central Coastal	Garcia River	I	Essential	56.2	36.0	2,000
	Gualala River	Ι	Supporting	175.6	6-12	1,052-2,105
	Navarro River	I	Supporting	131.5	6-12	787-1,576
	Russian River	Ι	Essential	465.2	20.0	9,300 🗡
	Central Coastal Div	versity Stratum	Recovery Target	t		11,300
	CC Chinor	ok ESU Recover	y Target			52,800
23	A regior	nai collaporation for	our water tuture		-	0

N RIVE

Upper Eel River (Cape Horn) Chinook

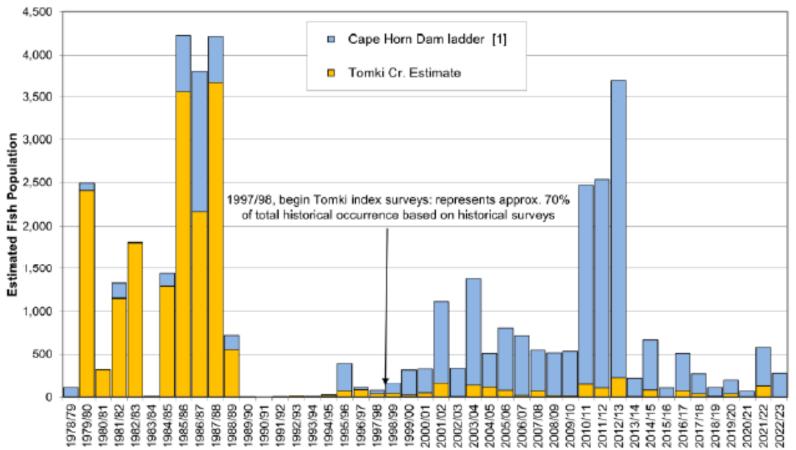


Figure 2. Historical adult Chinook salmon returns to the upper Eel River at the Cape Horn Dam fish ladder and Tomki Creek. PG&E Potter Valley Project 2023 Annual Agency Meeting.

Russian River Chinook

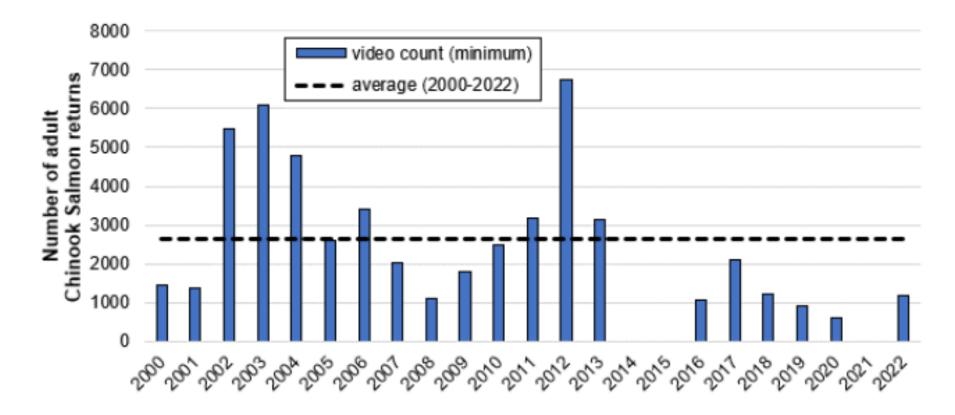


Figure 4. Video counts of adult Chinook salmon passing through the fish ladder at Mirabel Dam on the lower Russian River (Sonoma Water 2022).

NC Winter Steelhead Eel River (interior populations)

Diversity Strata	NC winter-run steelhead populations	Historical Population Status	Population's Role In Recovery	Current Weighted IP-km	Spawner Density	Spawner Abundance
	Middle Fork Eel River	1	Essential	472.4	20.0	9,400
	North Fork Eel River	1	Essential	315.7	20.0	6,300
	Redwood Creek (Humboldt Co) (Upper)*	I	Essential	86.2	30.2	2,600
	Upper Mainstem Eel River	I.	Essential	317.5	20.0	6,400 ★
	Van Duzen River	I.	Essential	312.2	20.0	6,200
	North Mountain Interi	or Diversity Str	atum Recovery T	arget		39,300

Upper Eel River (Cape Horn) Steelhead

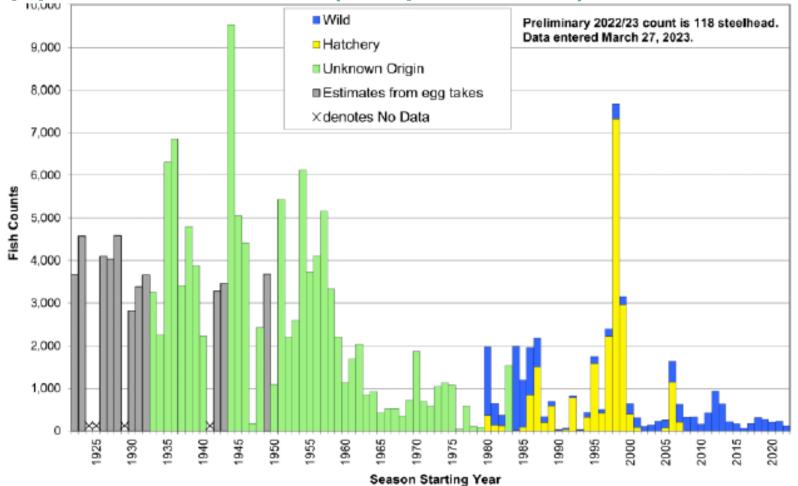


Figure 1. Historical adult steelhead counts at the Eel River Van Arsdale (Cape Horn Dam) Fisheries Station. PG&E Potter Valley Project 2023 Annual Agency Meeting.

CCC Steelhead Russian River (interior populations)

Diversity Strata	CCC Steelhead Population	Historical Population Status	Population's Role In Recovery	Current Weighted IP- km	Spawner Density	Spawner Abundance
Interior	Crocker Creek	D	Supporting	4.5	6-12	25-52
	Dry Creek	I	Essential	116.7	26.0	3,000
	Gill Creek	D	Supporting	7.2	6-12	41-84
	Maacama Creek	I	Essential	76.2	31.6	2,400
	Mark West Creek	I	Essential	164.2	20	3,300
	Miller Creek (Russian)	D	Supporting	3.1	6-12	17-35
	Sausal Creek	D	Supporting	11.1	6-12	65-131
	Upper Russian River	I	Essential	423.9	20	8,500 ★
	Interior Dive	ersity Stratum R	ecovery Target			17,200

11

6/21/202

Russian River Steelhead

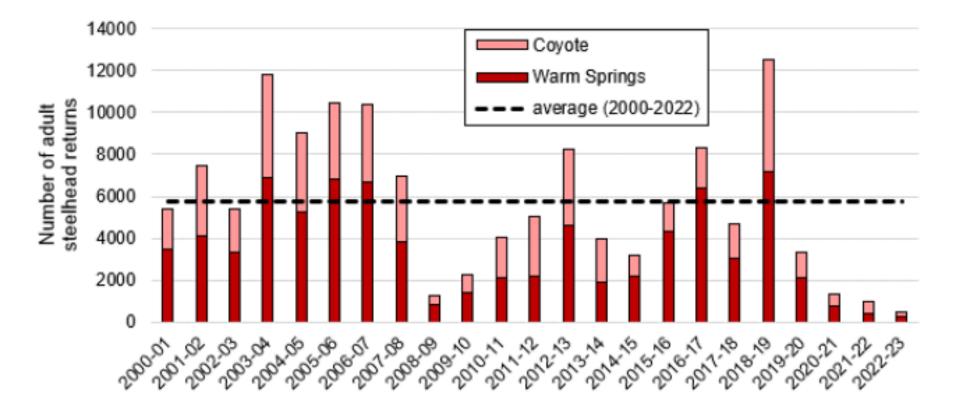


Figure 3. Adult steelhead returns to Russian River hatcheries at Coyote Valley Dam/Lake Mendocino and Warm Springs Dam/Lake Sonoma (Sonoma Water 2022).

Potter Valley Project Ad Hoc Committee

Fish Passage Profiles Evaluation Report

December 2019 Developed by the Fish Passage Working Group

Fish Passage Working Group Report Contributors

Scenarios and Options Subgroup

Craig Addley (Consultant to PG&E) Joshua Fuller (NMFS) Paul Kubicek (PG&E) Jon Mann (CDFW) David Manning (Sonoma Water) Scott McBain (Consultant to RVIT) Darren Mierau (CalTrout) Steve Thomas (NMFS)

Scoring Subgroup

Craig Addley (Consultant to PG&E) Joshua Fuller (NMFS) Damon Goodman (USFWS) Paul Kubicek (PG&E) Jon Mann (CDFW) David Manning (Sonoma Water) Scott McBain (Consultant to RVIT) Darren Mierau (CalTrout) Allen Renger (CDFW) Steve Thomas (NMFS) Larry Wise (PG&E)

Scott Dam and Lake Pillsbury

A regional collaboration for our water future

PVP Ad Hoc Alternatives

Fish Passage Scenarios and Options Summary Table

This table provides a summary of the various options for each fish passage scenario that the working group developed and evaluated.

Scenarios	1 Fishway at Existing Scott Dam	2 Trap & Haul	3 Partial Scott Dam Removal	4 Remove Scott Dam and Modify Cape Horn Dam
Options	1.1 Semi-Natural, Low-Gradient Bypass Channel 1.2 Conventional Fishway 1.2a Mead & Hunt Study 1.2b Modified Mead & Hunt	2.1 Trap & Haul, Van Arsdale to Scott Dam 2.2 Trap & Haul, at Scott Dam	3.1 Lower Scott Dam to 80' ~ Meets current PVID water demand and NMFS 2002 BiOp RPA environmental flows 3.2 Lower Scott Dam to 50' ~ Retain and manage accumulated sediment, no water storage within Lake Pillsbury	4.1 Remove Scott Dam and Modify Cape Horn Dam Diversion to East Branch Russian River with modified Cape Horn Dam infrastructure 4.2 Remove both Scott Dam and Cape Horn Dam With alternative diversion infrastructure

Species Life History Stages and Timing

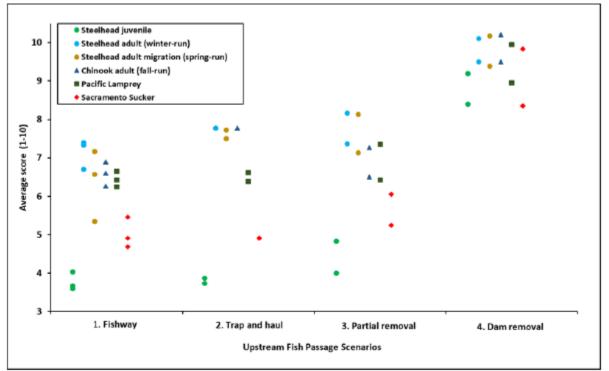
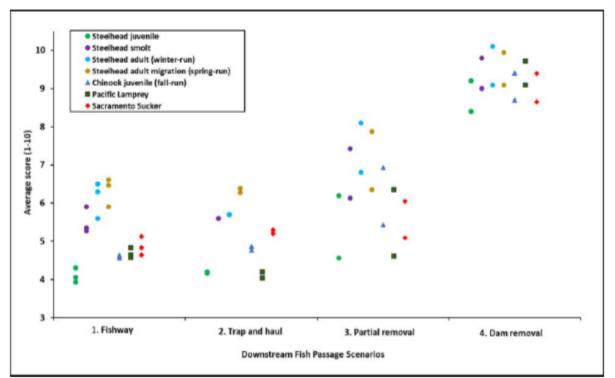

Species	Life Stage		Month										
species	Life Stage	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Oct Nov De	
Chinook	Adult Migration												
Salmon	Smolt												
(Fall-run)	Outmigration												
	Adult Migration												
Steelhead	(Winter-Run)												
(Summer-	Adult Migration												
and Winter-	(Summer-Run)												
run)	Smolt and Kelt												
	Outmigration												
Coho	Adult Migration												
Salmon*	Smolt												
зашюн	Outmigration												
Pacific Lamprey	Adult Migration												
Sacramento Sucker	TBD												

Table 4-2. Adult Migration and Smolt Outmigration Timing (Source: Stillwater Sciences et al. 2021).


PVP Ad Hoc Scoring Matrix for Alternatives

				Score Rar	ange					
Fish Passage Scenario Scoring Key	1			10						
coonightey										
Biological Feasibility for Upstream Passage										
Reservoir navigability	Difficulty f	inding tributa	ary				Success	finding tributary		
Passage efficiency (fishway, etc.)	Migration	delay/low su	ccess				No de	elay/high success		
Predation	Likely to k	e consumed	l			Suc	ccessfully	avoids predators		
Biological Feasibility for Downstream Passage										
Reservoir navigability	Difficulty finding way out of lake				Successfully finds route through lake					
Passage efficiency (fishway, etc.)	Delay/Lov	Delay/Low success past dam crest				No delay/high success past dam crest				
Predation	Likely to k	e consumed			Successfully avoids predators					
Habitat and Water Quality										
Habitat upstream of Scott Dam	Poor spav	Poor spawning/rearing habitat				Good spawning/rearing habita				
Water quality within reservoir	Warm ten	Warm temp/low dissolved O2				Cool temp/high dissolved				
Habitat downstream of Scott Dam	Poor spav	Poor spawning/rearing/holding habitat				Good spawning/rearing/holding hab				
Water quality below reservoir	Warm temp/low dissolved O2				Cool temp/high dissolv					
Hydrologic Implications	Unnatural flow timing and duration					Natural	flow timi	ing and duration		
Biological Viability (Spatial Structure & Diversity)	Limited natural seasonal movement and life history expression (due to human intervention)						nd life his	sonal movement story expression an intervention)		

PVP Ad Hoc Upstream and Downstream Passage Scoring Results

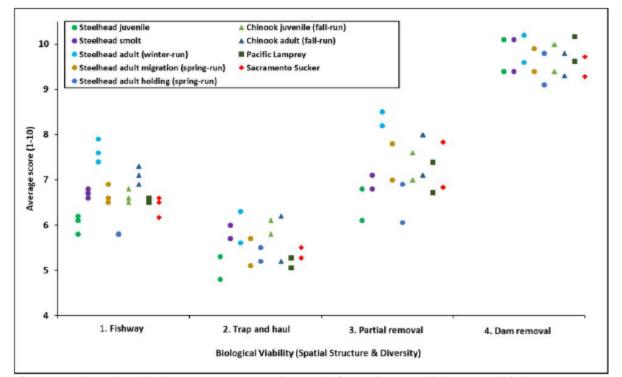


Figure 1. Biological feasibility for upstream fish passage is the ability for targeted species and associated life stages to successfully find the fishway and migrate to spawning/rearing tributaries above Scott Dam (upper Eel River, Rice Fork, and Salmon Creek, etc.). Allows for the potential benefit to the species by reestablishing occupancy of habitats, thereby promoting ecological and evolutionary processes responsible for local adaptation and diverse life histories.

Figure 2. Biological feasibility for downstream fish passage is ability for targeted species and associated life stages to successfully migrate from spawning/rearing tributaries above Scott Dam (upper Eel River, Rice Fork, and Salmon Creek, etc.) to the lower Eel River and ocean. Allows for the potential benefit to the species by reestablishing occupancy of habitats, thereby promoting ecological and evolutionary processes responsible for local adaptation and diverse life histories.

PVP Ad Hoc Biological Viability (behavior, life history expression)

Figure 3. Biological viability (spatial structure and diversity) refers to the natural behavior and life history expression of a focal species life stage relevant habitat access and a fish passage option. The passage option allows adult fish to make choices related to spawning location and timing (e.g., site fidelity, mainstem or tributary, no delays). The passage option allows juvenile fish to imprint on natal streams and express diverse rearing and migration strategies. The extent of which the fish passage option includes selective pressures (e.g., degree of human intervention, unnatural environmental constraints, etc.) that could limit life history adaptation and phenotype or genotype expression.

Scott Dam and Cape Horn Dam Removal Alternatives

PREPARED FOR

Two-Basin Solution Partners California Trout Humboldt County Mendocino County Inland Water and Power Commission Round Valley Indian Tribes Sonoma County Water Agency

PREPARED BY

McMillen Jacobs Associates 1471 Shoreline Drive, Suite 100 Boise, ID 83702

Preliminary Scott Dam Removal Cost (rapid S-1 and phased S-2)

D:	T .	Cost					
Division	Item	Alternative S-1	Alternative S-2				
1	GC's & Mobilization	\$15,940,000	\$25,665,000				
2	Demolition	\$46,980,000	\$47,230,000				
2 5	Metals	\$50,000	\$50,000				
31	Earthwork	\$1,700,000	\$350,000				
32	Exterior Improvements	\$1,500,000	\$1,000,000				
35	Marine and Waterway	\$2,900,000	\$2,700,000				
Total Construction	on Price	\$69,070,000	\$76,995,000				
	Taxes, Overhead, I	Profit & Bond					
Overhead		\$4,144,200	\$4,619,700				
Profit		\$8,288,400	\$9,239,400				
D:	T.	Cost					
Division	Item	Alternative S-1	Alternative S-2				
		Anternative 5-1					
Construction Bond	ls and Insurance	\$2,196,426	\$2,448,441				
Construction Bond California Sales Ta							
		\$2,196,426	\$2,448,441				
California Sales Ta	AX	\$2,196,426 \$5,007,575 \$19,636,601	\$2,448,441 \$5,582,138				
California Sales Ta Total		\$2,196,426 \$5,007,575 \$19,636,601 ncy	\$2,448,441 \$5,582,138 \$21,889,679				
California Sales Ta Total Contingency	ax Continge	\$2,196,426 \$5,007,575 \$19,636,601 ncy \$17,267,500	\$2,448,441 \$5,582,138 \$21,889,679 \$19,248,750				
California Sales Ta Total	ax Continge	\$2,196,426 \$5,007,575 \$19,636,601 ncy	\$2,448,441 \$5,582,138 \$21,889,679				
California Sales Ta Total Contingency Total Contingence	ox Continge y	\$2,196,426 \$5,007,575 \$19,636,601 ncy \$17,267,500 \$17,267,500	\$2,448,441 \$5,582,138 \$21,889,679 \$19,248,750 \$19,248,750				
California Sales Ta Total Contingency Total Contingenc Median Construct	ox Continge y	\$2,196,426 \$5,007,575 \$19,636,601 ncy \$17,267,500	\$2,448,441 \$5,582,138 \$21,889,679 \$19,248,750				

Table 2-1. Scott Dam Removal Alternatives Cost Estimate Summary.

Total Construction Cost Range (+100%)

\$211,948,202

\$236,266,857

WORKING DRAFT TECHNICAL MEMORANDUM • APRIL 2021 Potter Valley Project Feasibility Study: Potential Ecosystem and Fisheries Responses to Project Alternatives

Potter Valley Project Planning Agreement Parties California Trout Humboldt County Mendocino County Inland Water and Power Commission Round Valley Indian Tribes Sonoma County Water Agency

PREPARED BY

Two-Basin Partnership Project Plan = Run of the River, no Scott Dam

- Volitional Passage Above Scott Dam
- Minimize Impacts of Sediment on Biota and Habitat
- Restore Natural Processes (hydrology, geomorphology, water quality)
- Improve Cape Horn Dam Fish Passage
- Improve Van Arsdale Flow Bypass and Fish Screens

Spring Flow Recession With and Without Scott Dam

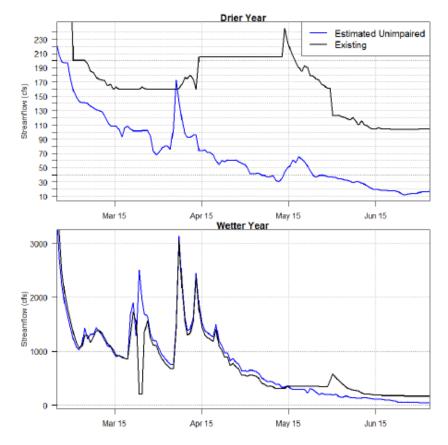


Figure 5. Spring recession hydrographs comparing modeled existing and modele unimpaired flows for between Scott Dam and Cape Horn Dam for an example dr year (2015) and wetter year (2017).

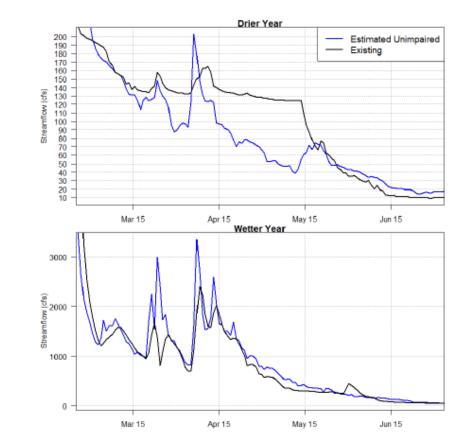
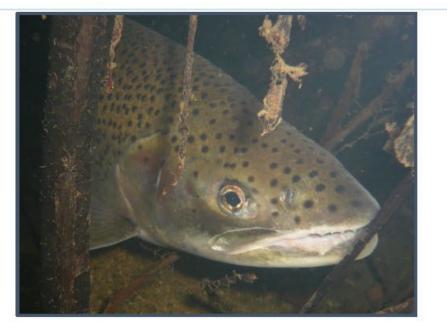


Figure 6: Spring recession hydrographs comparing modeled existing and modeled unimpaired flows for below Cape Horn Dam using the same example drier (2015) and wetter water (2017) year used in Figure 5.

Steelhead Response to Project Plan

Juvenile Rearing and Smolts Below Scott Dam


 Natural lower flow and warmer water = reduced carrying capacity, survival, productivity

Juvenile Rearing and Smolts Below CHD

 Minor changes in summer water temperatures = small change in productivity

Adult Spawning, Juvenile Rearing, and Smolts Above Scott Dam

- 200-300 miles of habitat
- Coldwater historical habitat = increased productivity
- Access for summer run steelhead = increased genetic diversity

Chinook Salmon Response to Project Plan

Spring Juvenile Outmigration

 Natural higher flow and warmer water = natural outmigration timing & better survival

Fall Adult Migration

• Lower flow = restricted passage & limited early season spawning – dry years may be problematic

Productivity of Habitat Above Scott Dam

 100 miles of habitat = greater juvenile life history diversity and population resiliency

Productivity of Habitat Below Scott Dam

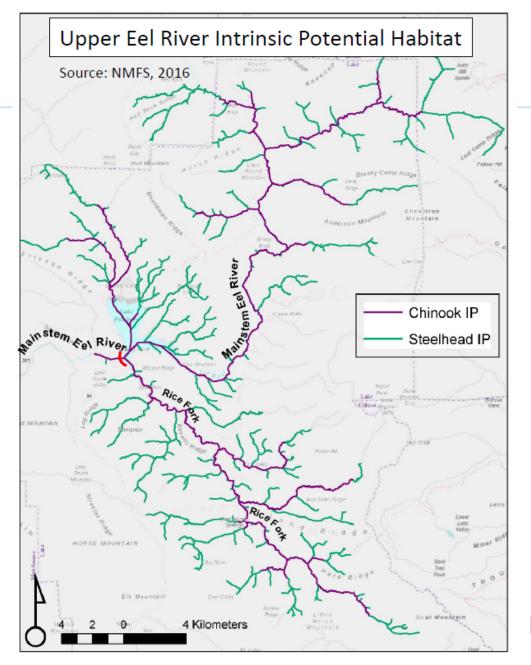
Varies by water year – little change most years

Ecological & Fisheries Responses to Project Plan (Huffman Ad Hoc Water Supply Scenario 2)

Positive Neutral or Unclear	Negative	
Darameter	Eel River	Russian River
Parameter	EerRiver	Russian River
Water Quality		
Geomorphic Function		
Riparian Habitat		
Aquatic Insects and Fish Energetics		
Salmonid Flow/Habitat Relationships		
Fish Passage		
Non-Native Predators		
Herpetofauna		
Lamprey		
Salmonid Productivity Below Scott Dam		
Salmonid Productivity Above Scott Dam		

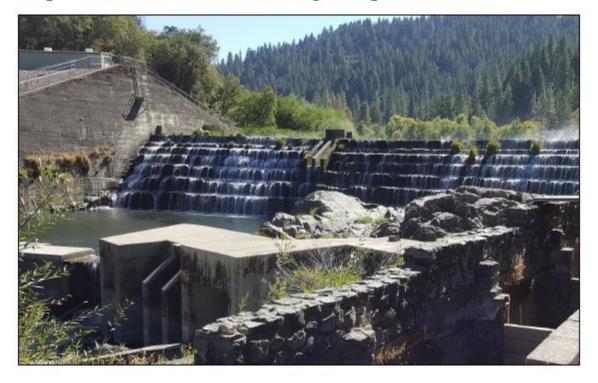
Non-Native Predator Response to Project Plan

- Scott Dam/Lake Pillsbury removal reduces habitat for Pikeminnow & Bass
- Access to habitat above Scott Dam reduces overlap between predators and salmonids
- Lower flow & warmer water below Scott Dam could increase interactions between predators and salmonids
- Predation risk remains high at CHD/Van Arsdale



Salmonid Productivity & Project Plan

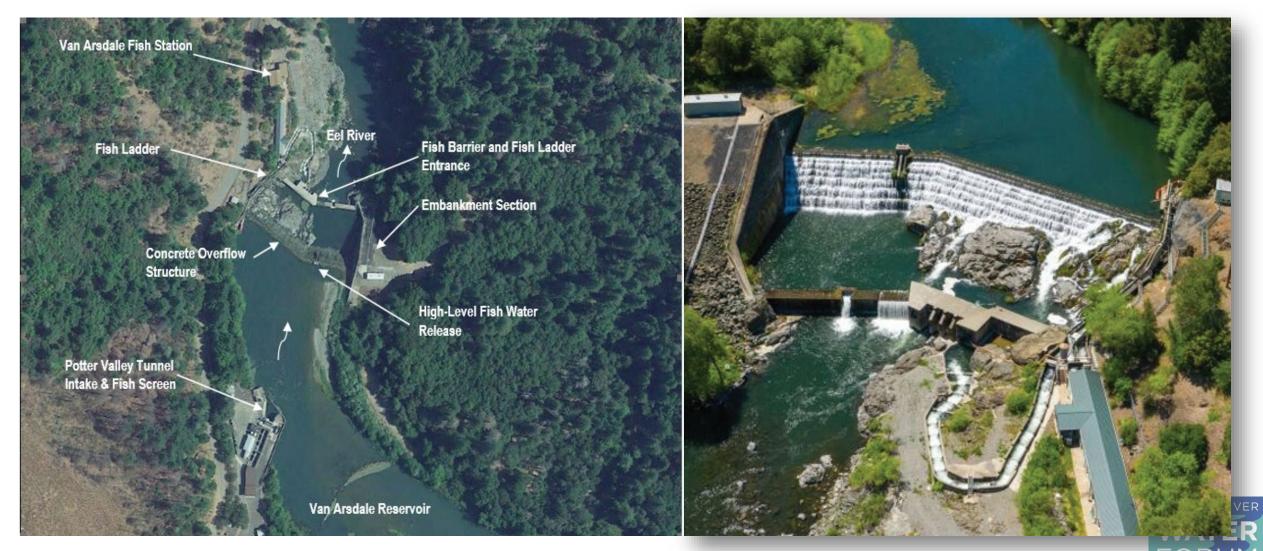
"In conclusion, any potential declines in both Steelhead and Chinook Salmon population productivity resulting from dam removal would be compensated for by the increased productivity resulting from access to the extensive, highquality, coldwater habitats in the upper Eel River and tributaries upstream of Scott Dam."


-Stillwater Sciences Team

TECHNICAL MEMORANDUM . NOVEMBER 2021

Cape Horn Dam Fish Passage Improvements

PREPARED FOR


Two-Basin Solution Partners California Trout Humboldt County Mendocino County Inland Water and Power Commission Round Valley Indian Tribes Sonoma County Water Agency

PREPARED BY

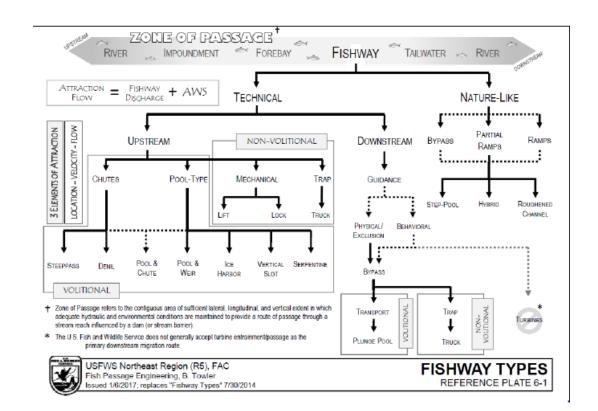
McMillen Jacobs Associates 1471 Shoreline Drive, Suite 100 Boise, ID 83702

Cape Horn Dam Existing Conditions

Existing Pool and Weir Fish Ladder

Cape Horn Dam After High Flow in 2019

Cape Horn Dam Fish Hotel and Ladder with Debris



Fish Passage Improvements at Cape Horn Dam

- New Fish Ladder
- Dam Removal with Pump Station
- Dam Removal with Roughened Channel
- Dam Removal with Upstream Diversion

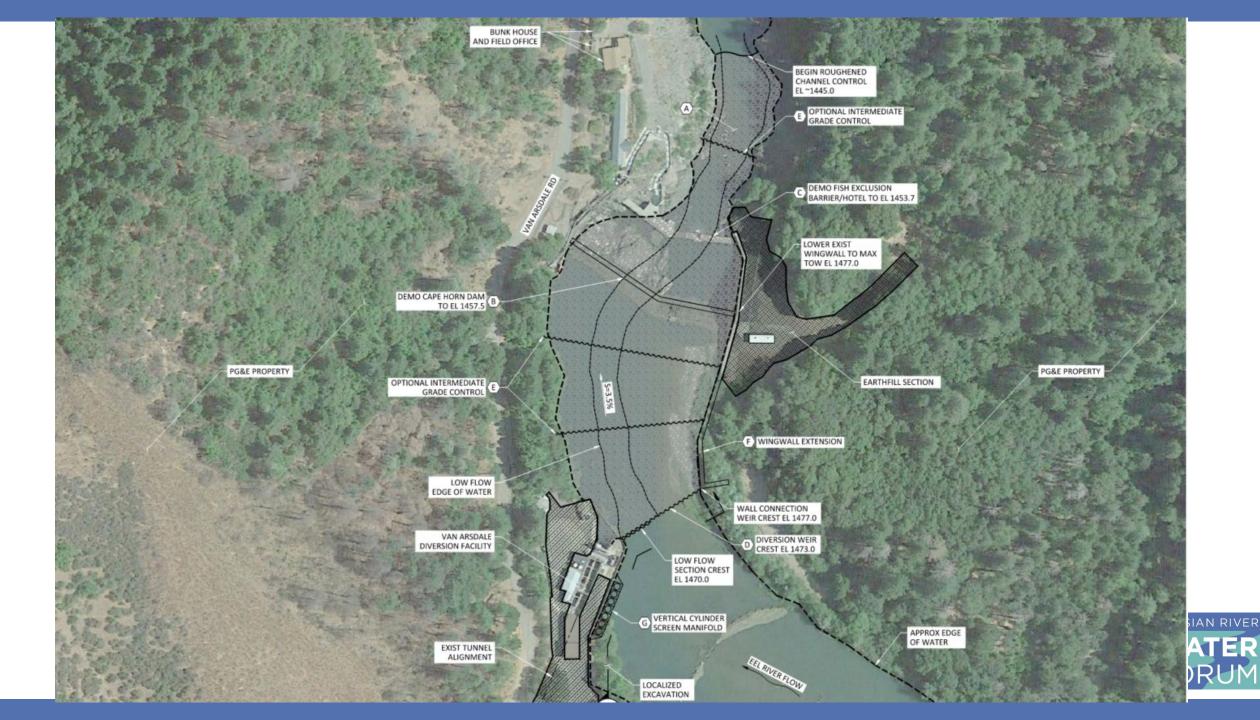


New Fish Ladder and Dam Crest Alternative 1

- Keep Cape Horn Dam and gravity diversion
- Construct new fish ladder for NMFS/CDFW compliance
- Improve upstream and downstream passage with inflatable bladder weirs
- Improve downstream passage with ogee section on dam face
- Provide sluicing capability at the ladder exit
- Protect lower ladder pools from debris and sediment accumulation
- Re-rate Van Arsdale fish screens to convey up to 300 cfs
- Modify bypass to discharge entrained fish back to the river
- Install suction dredging operation to address sediment load from Scott Dam removal

Cape Horn Dam Removal with Pump Station Alternative 2

- Remove a section of the dam close to level of existing downstream hydraulic control: existing CHD crest El. 1,490 to El. 1,447 = 43.3 ft.; riffle downstream El. 1,445 ft.
- Lower the fish barrier as needed (to El. 1,446) to serve as additional hydraulic control
- Construct new pump station to pump Eel River water to the existing Van Arsdale Diversion via large diameter pipeline
- Potentially install Obermeyer check structure to create submergence; alternatively, install low flow section
- Install array of vertical cylindrical screens to divert water and to screen fish
- Remove Van Arsdale Diversion fish screens and reconfigure to receive pumped water

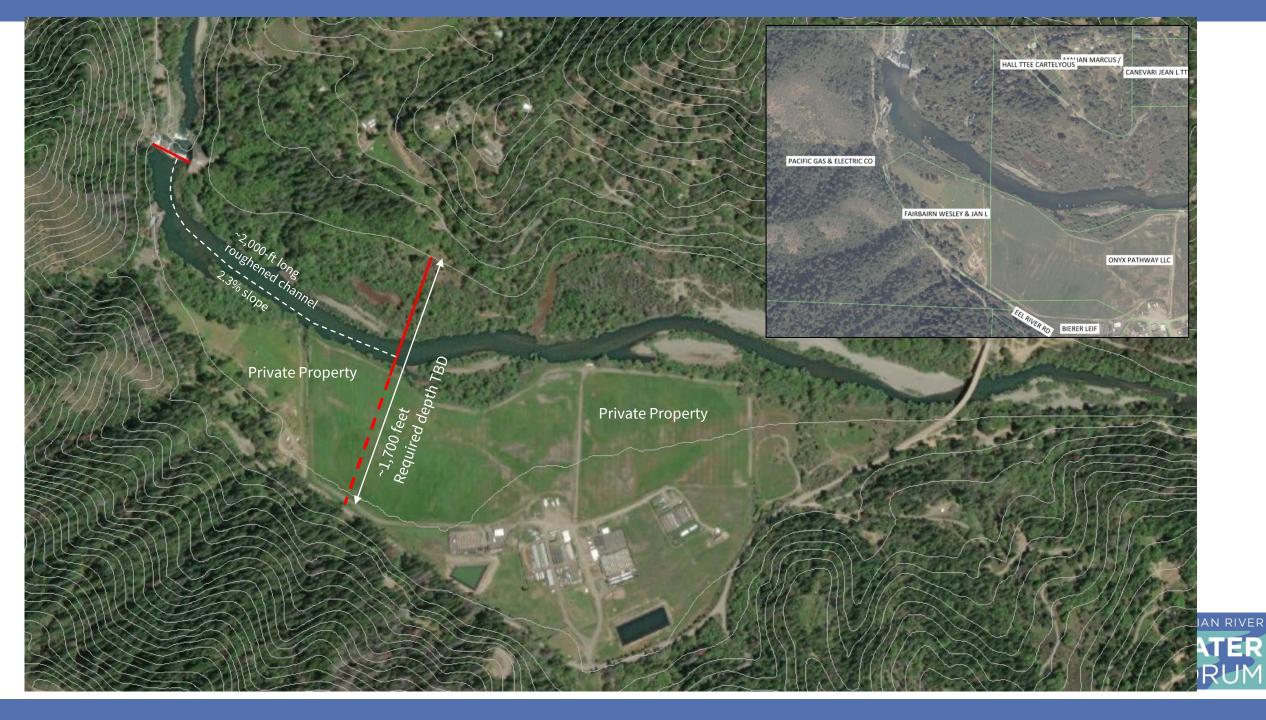


Cape Horn Dam Removal with Roughened Channel Alternative 3

- Lower gravity portion of dam to achieve target roughened channel slope: CHD crest El. 1,490 to channel crest El. 1,470; channel from 1,470 to 1,445 (3.1% grade, 800 ft. long, depth 10-15 ft., large boulders)
- Build out roughened channel "skeleton" using combination of sheetpile and existing concrete structures
- Install roughened channel beginning downstream near riffle control and extending upstream to existing diversion
- Install low flow section in upstream diversion weir
- Reconfigure diversion to include array of vertical cylindrical screens along outside guide wall

Upstream Diversion with Gravity Supply Alternative 4:

- Lower gravity portion of dam to appropriate elevation to achieve target roughened channel slope
- Build out roughened channel "skeleton" using combination of sheetpile and existing concrete structures
- Install roughened channel beginning downstream near riffle control and extending upstream to existing diversion
- Install low flow section in upstream diversion weir
- Reconfigure diversion to include array of vertical cylindrical screens along outside guide wall



Alternative 4 Summary of Issues

- Lateral control may be needed for the entire valley width of approximately 1,700 feet into order to prevent avulsion; alternatively, substantial bank armoring may be needed.
- Maintains reservoir upstream, with implications to passage efficiency (particularly juveniles)
- Does not allow river to "evolve" post-project
- Substantial length (2,000 ft) of over-steepened channel (2.3%) may require several intermediate vertical controls to prevent formation of barriers
- Material requirements for roughened channel would include ~3-ft diameter D50 over 9 acres; may require significant maintenance
- Sited on private property; would require easement or property transfer
- Unknown geotechnical conditions
- Most expensive

Report has Evaluation Matrix no Preferred Alternative

Potter Valley Project Feasibility Study

Cape Horn Dam Fish Passage Improvements

Table 7-1. Evaluation Matrix.						
	Evaluation					
Criteria	Alternative 1	Alternative 2	Alternative 3	Alternative 4		
	New Fish Ladder	Control	Roughened	Upstream		
		Section with	Channel with	Diversion with		
		Pump Station	Gravity Supply	Gravity Supply		
Biological Efficiency						
Volitional Upstream Passage	Low	High	Medium	High		
Volitional Downstream Passage	Low	High	Medium	Medium		
Energy Expenditure	High	Low	Medium	Low		
Stress Factor	High	Low	Low	Low		
Constructability						
Site Access	Medium	High	High	Low		
Rock Excavation	Medium	Low	High	Low		
Cofferdam Challenges	Medium	Medium	High	Medium		
Dewatering Challenges	Low	Medium	Medium	Medium		
Environmental Considerations						
Sediment Management	High	Low	Medium	Low		
Footprint Impact	Low	Low	Medium	High		
Permitting Effort	Low	Medium	Medium	High		
Operation						
Mechanical Equipment	High	Medium	Low	Medium		
Screen O&M Effort	Low	Medium	High	Low		
Pump O&M Effort	NA	High	NA	NA		
Gate(s) O&M Effort	High	Low	Low	Medium		
Design Approach						
Proven Technology	Medium	High	Medium	Low		
Ability to Meet Fish Passage	High	High	High	High		
Goals						
Design Complexity	Medium	Low	High	High		
Safety						
Safety Concerns	High	Medium	Low	Medium		
Cost						
Construction Cost	Low	Medium	High	High		
O&M Cost	Low	High	Low	Low		

Table 7-1. Evaluation Matrix.

Preliminary Cost Estimates

Potter Valley Project Feasibility Study

Cape Horn Dam Fish Passage Improvements

Line Item	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Contingency – 10%	\$ 1,272,899	\$ 1,987,311	\$ 3,513,731	\$ 4,803,844
Median Const. Cost	\$ 17,620,742	\$ 27,510,348	\$ 48,640,573	\$ 66,499,606
-30%	\$ 12,334,520	\$ 19,257,244	\$ 34,048,401	\$ 46,549,724
+50%	\$ 26,431,114	\$ 41,265,522	\$ 72,960,859	\$ 99,749,409

Next Steps

- CA Dept. of Water Resources (DWR) Grant underway
 - Water Form
 - Potter Valley Water Resources Investigation
 - Van Arsdale / Cape Horn Diversion Facility Assessment
 - 3 Alternatives to 20-30% design
 - Technical Advisory Group
- Application to new US Bureau of Reclamation (USBR) Aquatic Ecosystem Restoration Program
 - Grant awards announced late 2023/early 2024
 - Technical Advisory Group preferred alternative
 - 1 Alternative to 60% design

Thank You

David Manning Environmental Resources Manager Sonoma Water David.Manning@scwa.ca.gov

49